If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+30x+20=0
a = 5; b = 30; c = +20;
Δ = b2-4ac
Δ = 302-4·5·20
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{5}}{2*5}=\frac{-30-10\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{5}}{2*5}=\frac{-30+10\sqrt{5}}{10} $
| 2x-6+18=x+46 | | -6w-24=5(w-7) | | -6w-24=5(w-7 | | 2x+6+18=x+46 | | 5x²+30x+20=0 | | 4x^{2}+44x+112=0 | | W²-8w=20 | | 20/x=8/48 | | 4n-36=16 | | 12-x/5=3 | | 2(2x+3)=37 | | 2x+3(x-15)=0 | | v²+8v+9=0 | | 0.2(5000)+0.3=0.25(5000+x) | | 2(2x+3)=5(x+3 | | 5(2x-3)=3(3+4) | | V(t)=-5t^2+16t+9 | | 2(v-9)-3=-5(-5v+6)-5v | | x/5=37 | | 3x+2=4x-x | | x+3x10=8 | | 0.4*x+0.6*5=5.5 | | 2(4x+3)=3x+36 | | 3(2x-3)=3x+18 | | 2x-1=14-3x | | 6=(g+6) | | 5x+0.5=10x-2 | | |v|-13=-6 | | 20-0,5x=-2.5x-4 | | 24x^2=3x+27 | | -2x+4=-2x-2 | | 4x-23°=3x |